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Final Report for Contract N00014-85-K-0328
An Analysis of Multiple Grain CHiP Architectures

Lawrence Snyder
Department of Computer Science, FR-35

University of Washington
Seattle, Washington 98195

1 Scope of Report

This contract, originally planned to cover three years, was concluded effective September
1, 1986 with the majority of the scientific questions resolved; only one year of funding was
actually appropriated. This report recaps the scientific accomplishments during the actual
period of the contract.

2 Multigauge Architecture

The concepts and issues covered by this contract were in the beginning poorly understood
and quite amorphous. This makes for very interesting and exciting scientific work, but it
also implies that there may be false starts. The first and probably the only noticeable one
for us was in naming the concept: "Multigrain", though accurate and perspicuous for some
scientists, was vague and ambiguous to others. The issue is that the concept of "granularity"
is used many ways in parallel computation, and the term "multigrain" confused the matter
further by adding one more. Accordingly, we created a new term "multigauge", which not
only disambiguated it for existing concepts, it built on a useful analogy with railroads.
"Multigauge" has been well received and seems to be being adopted. In any event we have
used it throughout our work since early 1985, and will do so for this report.

2.1 Review of the Concept

A multigauge architecture is a design for a standard von Neumann machine that permits the
data path to be partitioned into subunits that can execute concurrently when the data values
are "small". Thus it is a method of achieving parallelism within the arithmetic/logic unit
of a computer that is applicable to both stand alone serial processors and to the processor LI
elements of highly parallel computers. Its advantages are the twin benefits of parallelism for C
narrow data and the ability to use the processor in its "regular mode" under programmer
control when full precision is necessary. There is the added benefit that multigauging is
available with minimal added hardware in certain cases, (explained below) but this is simply
a benefit, not the justification for the architecture.
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There is certain terminology and notation surrounding the multigauge concept that will
be useful in the subsequent discussion: A standard von Neumann machine and a muitigauge
machine executing at full precision are said to be wide gauge machines with a datapath of
B bits. A multigauge machine is partitioned into k narrow gauge machines, each executing
a datapath of b bits; B > k x b, and equality is generally assumed. Not all possible widths
are necessarily available with every multigauge machine, so a multigauge machine is often
described by listing the gauges with which it can execute; for example a (32, 16, 8) multigauge
machine can be partitioned into two or four concurrent processors.

A multigauge machine can execute in either SIMD or MIMD modes. In the former, there
is a single instruction stream and each narrow gauge machine has its own data stream. The
MIMD case provides for an instruction stream and a data stream for each narrow gauge
machine. Because it would be ludicrous to have an MIMD bit-serial machine, we postulate
the MIfMD threshold, the minimum value of b at which it is "reasonable" to run a multigauge
machine in MIMD mode; we take b=8, though it may be larger.

These concepts and related work have been described in the literature [1]; a notable
omission in the cited references is the work on TRAC, Texas Reconfigurable Array Processor
[4]; this machine was a parallel processor capable of a certain level of multigauge processing.

2.2 Multigauging the Quarter Horse
To make our study of multigauging concrete, we applied the concept to a specific micropro-
cessor architecture, the Quarter Horse [5]. This single chip, 32-bit microprocessor fabricated
in 3ju CMOS technology was designed (in 90 days) at the University of Washington. It
was thus a natural choice for multigauging experiments, because we understood it at the
lowest levels of detail. Moreover, single chip microprocessors present serious problems for
multigauging because of the limited "pin out", so the challenge was even greater. Before
describing the impact of multigauging on the Quarter Horse, we give a very brief description
of the architecture.

The Quarter Horse [5] has a 32-bit wide, dual-bus datapath, 32 general purpose registers,
a Mead-Conway [6] ALU with Manchester carry-chain, a barrel shifter and PLA controller.
The typical instruction requires 6 "microinstructions" and the design specification called for
a 75ns clock cycle. The machine uses a seif incrementing program Counter (PC). It also
uses 32 pins each for connecting the memory address register (MAR) and the memory data
register (MDR) to the memory system.

2.2.1 Partitioning the Components

Perhaps the first transformation necessary for multigauging a microprocessor that occurs to
one, but probably the least complicated, is the partitioning of the datapath components to
execute independently. In this section we review the changes required for the Quarter Horse,
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and comment on the difficulty of partitioning elements not found in the Quarter Horse.
The register file is trivially partitioned for normal multigauge execution, since each bit

is independent. Nothing has to be done. If, however, more exotic instructions are provided.
then some additional circuitry may be necessary [3]. Neither the MAR nor the MDR require
any change.

The Mead-Conway ALU requires modest modification. For all but one of the narrow
gauge datapaths, carry-in logic must be added. Symmetrically, all but one narrow gauge
machine needs flag logic, if it is to be executed in MIMD mode. (For SIMD execution we
assume only one of the narrow gauge processors can influence the control (branch), and so
only one machine needs flag logic; this might as well be the wide gauge machine's flag logic.)
Finally, the carry chain must be segmented between each narrow gauge machine, but because

P the design of the Manchester carry chain provides drivers every four bits, this change is very
straightforward.

The PC need not be split for SIMD execution and for MIMD execution, the problem is
analogous to splitting the ALU.

To partition the barrel shifter requires a rather surprising modification based on the
following fact: A barrel shifter of b-bits in width requires a height of O(b) bits. Thus,
partitioning the shifter in half requires a shifter only half the height, and so each of the two
narrow gauge shifters requires only a quarter of the area of wide gauge shifter. Other narrow
gauges take correspondingly less area. This phenomenon, which is based on the O(n 2 ) growth
rate of the area of barrel shifters, and which is predicted by the theory [6], implies that both
vertical and horizontal wires must be segmented at each "narrow gauge boundary" in each
dimension. However, the definition of boundary is different in each dimension [7].

Other typical data path components, though not found in the Quarter Horse, tend to fall
into one of the three classes already identified: "bitwise independent" components requiring
no change, e.g. complementor, "linear" components requiring straightforward segmentation,
e.g. a counter, and "quadradic" components requiring two dimensional segmentation, e.g. a
multiplier.

2.2.2 Memory System Partitioning

When a wide gauge machine is partitioned into narrow gauge machines, the size of the data
address can be dramatically reduced. If this means that the size of the addressable memory
is also reduced, then multigauging will not be a desirable way to exploit parallelism. (Recall
that dividing the address in half reduces the address space by dividing its log in half; e.g. a
32 bit address refers to over four billion locations, but a 16-bit address has roughly sixty-
five thousand.) Although it would not quite solve this addressing problem, adding more
wires between the processor and the memory would seem to offer the right "fix." But it is
definitely prohibited by the fact that single chip processors will not have enough "pins" from
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the "package".' Obviously, the von Neumann bottleneck gets a lot narrower in the presence
of multigauging.

Fortunately, there is a rather straightforward solution, that sacrifices very little. The
technique is to provide segment registers on the "memory side" of the memory- processor
interface for each narrow gauge machine. Each register contains the high order bits of the
narrow gauge machine's address, and for the "larger" gauges, e.g. 8 bits or greater, provides
adequate addressing capability in each segment. Special instructions are provided to load
the segment registers, which may require more than one narrow gauge operation. If the
machine is to be executed in MIMI) mode, it is advisable to have both an instruction stream
and a data stream segment register for each multigauge device.

As a benefit for supporting addressing when the segments are "smallish", it is advisable to
provide an "add with carry to memory" instruction for computing a sequential address. The
idea is that when the segment addresses are computed, there should be a smooth mechanism
for crossing the segment boundary, or at least recognizing when it has been crossed. This
will add flag logic to the SIMI) case, but it is our estimate that it is more effective than
depending exclusively on the software to manage segment boundaries.

2.2.3 Control

Perhaps the most difficult problem in multigauging is the control of the various machine
forms [2]. To simplify the matter, we consider SIMI) and MIMD separately.

The ideal situation, available only to the SIMI) case basically, is to use a single controller
for the wide gauge and all of the narrow gauge machines. This requires that each machine
have essentially the same instruction set. The obvious exceptions are the gauge shifting
instructions which only apply in one gauge, and control instructions which have somewhat
different semantics in different gauges. A single controller is feasible because the control lines
generally run "perpendicular" to the datapath.

MIMI) multigauge machines have multiple program counters and thus execute different
instructions at the same time. The control implication of this fact is that different control
lines must be set for each narrow gauge machine. This probably means that there are separate
controllers for each narrow gauge machine. It would be possible in the microprogrammed case
to use a multiported control ROM with separate rnicroPCs for each narrow gauge machine;
the problem is that a careful design would be needed because microcode sequencing is much
more complex than normal program sequencing.

The final observation about MIMD control concerns the problem that the instruction
streams and the data streams should have their own segment registers for each narrow
gauge machine, and that in MIMD execution the narrow gauge machines can be executing
different instructions at any given moment. This means that one machine might be fetching
an instruction and another might be fetching data; the memory system must be told which

Eic packaging helps but doesn't solve the problem, so we face the problem headon.
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segment register to use in each case. This can be done using additional control signals
between the processor and memory, but if the prohibition against additional wires between
the processor and memory is in force, then we will be required to observe a protocol in
memory reference. The rigid reference ordering can be implemented independently on each
side of the von Neumann bottleneck and thus no additional wires are needed. Use of the
protocol is no real problem, because many RISC machines - the kind for which the prohibition
can be expected to apply - use a regimen in which memory references follow a rigid protocol.

2.3 Applications

The possibility of creating a multigauge machine can be seen rather clearly from the foregoing
remarks. What is not entirely evident is whether there is any beneficial speedup from
multigauging. The matter is complicated by the fact that certain multigauge machines can
be implemented with little or no additional hardware, but these are the rigid, SIMD machines
with only one or a few narrow gauge sizes. It is not clear how useful such a machine might
be. On the other hand, a full, MIMD multigauge machine with many gauge sizes would be
much more useful and require a lot more hardware. This hardware may be used better for
other purposes. Finally, multigauge machines are subject to Amdahl's law, i.e. a substantial
amount of any given computation may require the wide gauge and thus yield no speedup.
In order to determine which of these possibilities was truth and which was conjecture, we
analyzed some specific applications[3]. The results were impressive.

Two applications have been studied in depth in order to ascertain the amount of speedup
that can actually be achieved. The applications both come from graphics: B~zier curve
generations and scan conversion using Bresenham's algorithm. Since no multigauge machine
has actually been built, it has been impossible to obtain true measurements. Nevertheless,
our methodology is sufficiently detailed that we can confidently report the findings as the
next best thing to actual measurements.

The methodology is to seek problems of practical interest that compute with "narrow"
data; for graphics we consulted Professor Tony DeRose. Next the problems were programmed
in C and tested on realistic data (on a VAX) to produce actual dynamic behavior. Then, the
C source programs were compiled for the Quarter Horse microprocessor whose object code
can be put into one-to-one correspondence with the test program code. The difference is, of
course, that the "narrow" gauge instructions can be executed several at a time. Then the
machine instructions of the Quarter Horse object program were expanded to their microcode
equivalents. Each of these microinstructions has a fixed duration determined by the clock
rate of the computer. Consequently, we can describe the behavior of the machine in a
way that can be reported either as a unit free speedup (the ratio of the base machine's
performance over the multigauge machine's performance) or in absolute seconds.

The results are striking [3]. For a B~zier curve Q(u) of degree n defined by

Q(u) = E=o VB (u), ue [0, 1], (1)



V

where V0,..., V, are controlling points commonly called control vertices, and Bo, ..., Bn'(u)
are the n"h degree B6zier blending functions defined by

BW (u)= n ) u ioi - u ) n - i '

we can perform the computation for a 1024 x 1024 pixel display (i.e. 10 bits precision on
output) with b = 16 bits of precision internally, which is required to control error propagation.
Thus a k = 2 multigauge machine can achieve speedups q for n points in the range [64. oc]

r1 C [1.937, 1.939].

Of course, k = 2 is the theoretical best. It is important to observe that the B6zier
curve evaluation must change gauge for each generated point, an overhead many algorithms
wouldn't have, and still it approaches optimal speedup.

To get an idea of how multigauging would apply to a broad class of graphics problems,
we studied line segment transformations and scan conversion. This is a "typical" graphics
problem in that it uses a 4 x 4 homogeneous matrix to transform points, a very common
'subroutine'.

Bresenham's algorithm was performed by a k = 2 multigauge machine that generates
points for a line "from both ends towards the middle", a scheme that lead to a novel ar-
chitectual feature, the virtual register[3]. Using the kind of analysis mentioned above, we
find

77 = 1.70 for a single line,
77 = 1.99 for 50 lines, and
77 = 1.9995 for 1000 lines.

The latter case, of course, is most typical for graphics displays of "interesting" objects.

3

A variety of other topics were treated in addition to the multigauge work, as outlined in the
original proposal. In this section we detail the results of the most significant ones.

3.1 Poker

The Poker Parallel Programming Environment is the first complete set of programming sup-
port facilities developed expressly for parallel computation. Developed by the Blue CHiP
project in research conducted continuously since January 1982, Poker provides a novel set-
ting for programming nonshared memory parallel computers. Because the concepts are com-
pletely new and differ substantially from all previous programming languages, the amount of
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research that has been expended on Poker has been large. Nevertheless, concepts in Poker
apply directly to the application of multigauging in parallel architectures, and thus Poker
research was an important adjunct to the multigauge research. We review the specific studies
supported by this contract.

3.1.1 Initial Distribution of Poker

As just indicated, Poker contains many novel ideas that were motivated by the realization
that parallel programming is substantially harder than serial programming and that pro-
grammers will require greater support from their programming environment if they are to
use parallel computers productively. Like any piece of research some of the ideas in Poker
are fundamental and important, some are misguided and wrong-headed and most are in be-
tween. These are the ones that need scrutiny by the research community, but the only way
for them to get a clear picture of the system is to use it. Accordingly we spent considerable
time preparing Poker for distribution, and in October of 1985, Poker was released to the
research community[8]. There has been a steady flow of requests for the system ever since.

3.1.2 Retargeting Poker

Poker was originally developed to program the CHiP architectures generally and the Pringle
Parallel Computer (a hardware simulator of CHiP architectures), specifically. As a result
many of its features were specialized to the CHiP architecture. When it became clear
that Poker could be a far more general facility than just a programming language for the
CHiP Computer, that it could be used for any of the known parallel architectures, then it
became critical to study two problems: First, how could the features specialized to the CHiP
architecture be removed and replaced with features with wider applicability, and second, how
could Poker be restructured to generate programs for arbitrary parallel machines, i.e. how
could Poker be retargeted? Solutions to both problems have been developed under this
contract.

Recognizing Poker features that are peculiar to the CHiP architecture was easier than
replacing them with alternatives. Examples of CHiP-specific features are (refer to the Poker
description [8]): The switches (circles) in the switch setting view, the use of the XX pro-
gramming language for specifying processor element codes, the geometric rather than the
topological layout-of the interconnection graph, the convention that the number of processors
be a power of 4, etc. The switches were removed simply by not drawing them; they still play
a valuable role that would require a similar technique if they were not available, so it was
deemed reasonable to just keep them in place but hidden. The XX programming language
remains in the system, but the ability to use C as a processor element programming language
was added. Nothing was done about the geometric emphasis of the communication graph;
it was just too fundamental a part of the system and is not too great of an impediment to
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others. Clearly, any subsequent reimplementation would remove this geometric emphasis in
favor of a more topological style. The "power of four" problem is simply ignored since this
is not a serious restriction (most parallel computers have a similar character) and the logical
processors used by Poker can always be ignored. Other CHiP-specifics have been handled
using similar "mixed" strategies.

The real challenge to the Poker research team was the retargeting of Poker to other
parallel architectures[9]. Retargeting, or porting, sequential software is still a difficult task
a quarter of a century after the problem was first appreciated; it is the primary motivation
why computer manufacturers retain extinct instruction sets for their computers - they need
the existing software base to continue to run. The problem is IMMENSELY more difficult in
parallel computation because the architectures "show through" into the programs far more
in parallel computation than in serial computation. Of course, there is no base of parallel
software, but if it is to be developed, the retargeting problem must be solved.

A major accomplishment of this contract was the retargeting of Poker to a new ma-
chine[9]. To be specific, the restructuring of Poker in order that it be able to compile code
for different machines was accomplished by the current contract and the actual porting of
Poker to the CalTech Cosmic Cube was begun as a proof of the concept. (The port was com-
pleted under another contract.) The three major requirements to enable Poker to generate
code for another parallel computer are (1) the development of a C compiler for the processor
element codes, (2) the development of a runtime environment for the Poker programs on
the host machine, and (3) the construction of a "mapper" that converts the communication
structure used in Poker into an appropriate communication structure for the host machine.
The first requirement is almost always met by the computer manufacturer by industry tra-
dition, and the second can likely build effectively on the available software provided by the
manufacturer. For the Cosmic Cube, these three constituents required approximately 3 man
months to get up and running.

3.1.3 Hearts: Poker for Systolic Arrays

The Poker Parallel Programming Environment is a general facility for programming ar-
bitrary MIMD parallel computers. It is common to use systolic arrays as subroutines when
engaged in such programming, but doing so is somewhat cumbersome because of the gener-
ality of Poker. The question arises whether Poker could be made more expressive if it was
limited to programming only systolic arrays. This is a reasonable restriction since there are
many systolic array users and so such a "restricted" system could still find wide applicability.
We have considered the question [10,11] and found tbat such a system would not only be
feasible, but it would likely be very convenient.
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3.2 Parallel Programming Paradigms

There are many programming paradigms known for serial programming - divide-and-

conquer, greedy, dynamic programming, etc., but because parallel programming is so new,

there are few "standard" problem solving methods known. A graduate student, Phil Nelson,
has studied this topic for his doctoral research in an effort to identify a set of parallel pro-

gramming paradigms. He has produced a list including systolic and pipelined algorithms,
divide-and-conquer, and a new class called the CAB class, for compute, aggregate and broad-

cast.
One reason to study paradigms is as an aid to discovering new algorithms: A technique

that worked well once might be applied in another context with good results. Using this

approach, Nelson has discovered a new matrix multiplication algorithm that is based on the

divide-and-conquer paradigm[12]. This new algorithm uses the same principles of Strassen's

optimal serial matrix multiplication algorithm in that it subdivides the matrix product prob-

lem until it reduces to a large set of 2 x 2 matrix products. It should be noted that Nelson's
algorithm doesn't eliminate any multiplication operations and so is not subject to the insta-

blity problems that Strassen's algorithms is. (This result was reported at the SIAM meeting

in Norfolk, VA.)
Another reason to study paradigms is that transformations that one wishes to apply to

an algorithm might well be applicable to all of the algorithms in its paradigmatic class.
Contraction is one such operation which has been studied in this way[13]. Recall that
contraction is required when a parallel program has many more parallel processes than the

parallel computer has parallel processors, and so multiple processes must be allocated to
each proessor It has been shown that algorithms of the CAB paradigm can be contracted
using the same allocation scheme.[13]

4 Conclusions

It is rin from the research summarized in this report that multigauging is an effective
it hetrte for reah ztag parallel speedup of processors when the data being processed is "small".

rIhe ,est results cone for the many problems that admit an SIMD execution policy, since the
SI.MD multigauging capability can be added to a standard computer or parallel computer

processing elerent with little hardware cost. In this case multigauging provides essentially
free speedup. The MIMD case is considerably more expensive in terms of hardware and its

potential applications turned out to be unexpectedly rare. It can therefore be recommended
that an SIMD multigauge machine be constructed along the lines discussed in the reports
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